Estimating Measurement Error of the Patient Activation Measure for Respondents with Partially Missing Data.
نویسنده
چکیده
The patient activation measure (PAM) is an increasingly popular instrument used as the basis for interventions to improve patient engagement and as an outcome measure to assess intervention effect. However, a PAM score may be calculated when there are missing responses, which could lead to substantial measurement error. In this paper, measurement error is systematically estimated across the full possible range of missing items (one to twelve), using simulation in which populated items were randomly replaced with missing data for each of 1,138 complete surveys obtained in a randomized controlled trial. The PAM score was then calculated, followed by comparisons of overall simulated average mean, minimum, and maximum PAM scores to the true PAM score in order to assess the absolute percentage error (APE) for each comparison. With only one missing item, the average APE was 2.5% comparing the true PAM score to the simulated minimum score and 4.3% compared to the simulated maximum score. APEs increased with additional missing items, such that surveys with 12 missing items had average APEs of 29.7% (minimum) and 44.4% (maximum). Several suggestions and alternative approaches are offered that could be pursued to improve measurement accuracy when responses are missing.
منابع مشابه
Cast Partial Denture versus Acrylic Partial Denture for Replacement of Missing Teeth in Partially Edentulous Patients
Aim: To compare the effects of cast partial denture with conventional all acrylic denture in respect to retention, stability, masticatory efficiency, comfort and periodontal health of abutments. Methods: 50 adult partially edentulous patient seeking for replacement of missing teeth having Kennedy class I and II arches with or without modification areas were selected for the study. Group-A was t...
متن کاملA blended model for estimating of missing precipitation data (Case study of Tehran - Mehrabad station)
Meteorological stations usually contain some missing data for different reasons.There are several traditional methods for completing data, among them bivariate and multivariate linear and non-linear correlation analysis, double mass curve, ratio and difference methods, moving average and probability density functions are commonly used. In this paper a blended model comprising the bivariate expo...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملPatient Safety Culture: A Meta-analysis of Hospital Data
Background and Objectives: Patient safety (PS) is one of the most important and essential elements of quality in healthcare setting. A systematic review and meta-analysis was performed to assess the status of patient safety culture using the Hospital Survey on Patient Safety Culture (HSOPSC). Methods: In this systematic review and meta-analysis study, data were collected through searching dat...
متن کاملEfficient Estimation of Population-Level Summaries in General Semiparametric Regression Models
This article considers a wide class of semiparametric regression models in which interest focuses on population-level quantities that combine both the parametric and the nonparametric parts of the model. Special cases in this approach include generalized partially linear models, generalized partially linear single-index models, structural measurement error models, and many others. For estimatin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioMed research international
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015